※ 当サイトは、アフィリエイト広告を利用しています。

【NBA2023-24 レギュラー・シーズン】NBAチームとプレイヤーから見るリーグ全体の特徴と傾向

記事内に広告が含まれています。
スポンサーリンク
スポンサーリンク

※参考<統計ソフトRに入力するコマンド>

統計ソフトRのインストール手順をまとめた記事も作成していますので、よろしければご参考ください。

library(BasketballAnalyzeR)
library(gridExtra)
Tbox2324 <- read.csv(file="Tbox_2324.csv")
Obox2324 <- read.csv(file="Obox_2324.csv")
Tadd2324 <- read.csv(file="Tadd_2324.csv")
Pbox2324 <- read.csv(file="Pbox_2324.csv")
dts.PbP.2324 <- read.csv(file="PbP_2324.csv")
PbP2324 <- PbPmanipulation(dts.PbP.2324)

# Possessions, PACE, Offensive/Defensive Ratings, Four Factors
fourfactors2324 <- fourfactors(Tbox2324, Obox2324)
Playoff <- Tadd2324$Playoff
fourfactors2324PO <- data.frame(fourfactors2324, Playoff)
fourfactors2324PO

# Scatter plot of PACE, Offensive/Defensive Ratings, Four Factors
ggplot(data=fourfactors2324PO, aes(x=PACE.Off, y=PACE.Def, color = Playoff, label=Team)) +
       geom_point() +
       ggrepel::geom_text_repel(aes(label = Team))+
       geom_vline(xintercept =mean(fourfactors2324PO$PACE.Off))+
       geom_hline(yintercept =mean(fourfactors2324PO$PACE.Def))+
       labs(title = "PACE - NBA teams (NBA 2023 - 2024 Regular Season)")+
       labs(x = "Pace (Possessions per minute) of the Team") +
       labs(y = "Pace (Possessions per minute) of the Opponents")

ggplot(data=fourfactors2324PO, aes(x=ORtg, y=DRtg, color = Playoff, label=Team)) +
      geom_point() +
      ggrepel::geom_text_repel(aes(label = Team))+
      geom_vline(xintercept =mean(fourfactors2324PO$ORtg))+
      geom_hline(yintercept =mean(fourfactors2324PO$DRtg))+
      labs(title = "ORtg and DRtg - NBA teams (NBA 2023 - 2024 Regular Season)")+
      labs(x = "Offensive Rating of the Team (ORtg)") +
      labs(y = "Offensive Rating of the Opponents (DRtg)")

ggplot(data=fourfactors2324PO, aes(x=F1.Off, y=F1.Def, color = Playoff, label=Team)) +
      geom_point() +
      ggrepel::geom_text_repel(aes(label = Team))+
      geom_vline(xintercept =mean(fourfactors2324PO$F1.Off))+
      geom_hline(yintercept =mean(fourfactors2324PO$F1.Def))+
      labs(title = "Factor 1: eFG% - NBA teams (NBA 2023 - 2024 Regular Season)")+
      labs(x = "eFG% (Offense)") +
      labs(y = "eFG% (Defense)")

ggplot(data=fourfactors2324PO, aes(x=F2.Off, y=F2.Def, color = Playoff, label=Team)) +
      geom_point() +
      ggrepel::geom_text_repel(aes(label = Team))+
      geom_vline(xintercept =mean(fourfactors2324PO$F2.Off))+
      geom_hline(yintercept =mean(fourfactors2324PO$F2.Def))+
      labs(title = "Factor 2: TO Ratio - NBA teams (NBA 2023 - 2024 Regular Season)")+
      labs(x = "TO Ratio (Offense)") +
      labs(y = "TO Ratio (Defense)")

ggplot(data=fourfactors2324PO, aes(x=F3.Off, y=F3.Def, color = Playoff, label=Team)) +
      geom_point() +
      ggrepel::geom_text_repel(aes(label = Team))+
      geom_vline(xintercept =mean(fourfactors2324PO$F3.Off))+
      geom_hline(yintercept =mean(fourfactors2324PO$F3.Def))+
      labs(title = "Factor 3: REB% - NBA teams (NBA 2023 - 2024 Regular Season)")+
      labs(x = "REB% (Offense)") +
      labs(y = "REB% (Defense)")

ggplot(data=fourfactors2324PO, aes(x=F4.Off, y=F4.Def, color = Playoff, label=Team)) +
       geom_point() +
       ggrepel::geom_text_repel(aes(label = Team))+
       geom_vline(xintercept =mean(fourfactors2324PO$F4.Off))+
       geom_hline(yintercept =mean(fourfactors2324PO$F4.Def))+
       labs(title = "Factor 4: FT Rate - NBA teams (NBA 2023 - 2024 Regular Season)")+
       labs(x = "FT Rate (Offense)") +
       labs(y = "FT Rate (Defense)")

# Correlation matrix
data2324 <- subset(Pbox2324, MIN>=500)
attach(data2324)
X <- data.frame(P2M, P3M, FTM, REB=(OREB+DREB), AST, STL, BLK, TOV)/MIN
detach(data2324)
corrmatrix <- corranalysis(X[,1:8], threshold=0.4)
plot(corrmatrix)

attach(fourfactors2324)
Y <- data.frame(PACE.Off, ORtg, eFGp.Off=F1.Off, TOR.Off=F2.Off, REBp.Off=F3.Off, FTR.Off=F4.Off, PACE.Def, DRtg, eFGp.Def=F1.Def, TOR.Def=F2.Def, REBp.Def=F3.Def, FTR.Def=F4.Def)
detach(fourfactors2324)
corrmatrixY <- corranalysis(Y[,1:12], threshold=0.4)
plot(corrmatrixY)

# Bubble plot of NBA teams
attach(Tbox2324)
X <- data.frame(T=Team, P2p, P3p, FTp, AS=P2A+P3A+FTA)
detach(Tbox2324)
labs1 <- c("2-point shots (% made)", "3-point shots (% made)", "free throws (% made)", "Total shots attempted")
bubbleplot(X, id="T", x="P2p", y="P3p", col="FTp", size="AS", labels=labs1, title="Bubble plot of NBA teams: Shooting percentage and shots attempted (NBA 2023 - 2024 Regular season)", text.size=3.5)

attach(Tbox2324)
Y <- data.frame(T=Team, DREB=DREB/GP, STL=STL/GP, BLK=BLK/GP, PM=PM/GP)
detach(Tbox2324)
labs2 <- c("Defensive Rebounds", "Blocks", "Plus-Minus", "Steals")
bubbleplot(Y, id="T", x="DREB", y="BLK", col="PM", size="STL", labels=labs2, title="Bubble plot of NBA teams: Defensive stats and Plus-Minus (NBA 2023 - 2024 Regular season)", text.size=3.5)

# Radar chart of NBA teams
attach(Tbox2324)
T <- data.frame(P2M,P3M, FTM, REB=OREB+DREB, AST, STL, BLK)/MIN
detach(Tbox2324)
radialprofile(data=T, title=Tbox2324$Team, std=TRUE)
listplots <- radialprofile(data=T, title=Tbox2324$Team, std=TRUE)
grid.arrange(grobs=listplots[1:15], ncol=5)
grid.arrange(grobs=listplots[16:30], ncol=5)

# Non-hierarchical clustering - K-means
FF2324 <- fourfactors(Tbox2324, Obox2324)
OD.Rtg <- FF2324$ORtg/FF2324$DRtg
F1.r <- FF2324$F1.Off/FF2324$F1.Def
F2.r <- FF2324$F2.Def/FF2324$F2.Off
F3.Off <- FF2324$F3.Off
F3.Def <- FF2324$F3.Def
P3M <- Tbox2324$P3M
STL.r <- Tbox2324$STL/Obox2324$STL
data2324 <- data.frame(OD.Rtg, F1.r, F2.r, F3.Off, F3.Def, P3M, STL.r)
set.seed(29)
kclu1 <- kclustering(data2324)
plot(kclu1)
set.seed(29)
kclu2 <- kclustering(data2324, labels=Tbox2324$Team, k=5)
plot(kclu2)
kclu2

kclu2.PO <- table(kclu2$Subjects$Cluster, Tadd2324$Playoff)
kclu2.W <- tapply(Tbox2324$W, kclu2$Subjects$Cluster, mean)
Xbar <- data.frame(cluster=c(1:5), N=kclu2.PO[,1], PI=kclu2.PO[,2], PO=kclu2.PO[,3], W=kclu2.W)
barline(data=Xbar, id="cluster", bars=c("PO","PI","N"), labels.bars=c("Playoff","Playin", "No"), line="W", label.line="average wins", decreasing=FALSE)

cluster <- as.factor(kclu2$Subjects$Cluster)
Xbubble <- data.frame(Team=Tbox2324$Team, PTS=Tbox2324$PTS,  PTS.Opp=Obox2324$PTS, cluster,  OD.Rtg=data2324$OD.Rtg)
labs <- c("PTS", "PTS.Opp", "cluster", "OD.Rtg")
bubbleplot(Xbubble, id="Team", x="PTS", y="PTS.Opp",   col="cluster", size="OD.Rtg", labels=labs, title="Bubble plot of NBA teams: PTS, Opponent PTS, Cluster and ODRtg (NBA 2023 - 2024 Regular season)", text.size=3.5)

# Gini index with respect to PTS and AST
no.teams <- nrow(Tbox2324)
GINI_PTS <- array(0, no.teams)
for (k in 1:no.teams) { 
       Teamk <- Tbox2324$Team[k] 
       Pbox2324.sel <- subset(Pbox2324, Team==Teamk) 
       index1 <- inequality(Pbox2324.sel$PTS, npl=8) 
       GINI_PTS[k] <- index1$Gini
       }
GINI_AST <- array(0, no.teams)
for (k in 1:no.teams) { 
       Teamk <- Tbox2324$Team[k] 
       Pbox2324.sel <- subset(Pbox2324, Team==Teamk) 
       index2 <- inequality(Pbox2324.sel$AST, npl=6) 
       GINI_AST[k] <- index2$Gini
       }
dts <- data.frame(Team=Tbox2324$Team, GINI_PTS, GINI_AST, PTS=Tbox2324$PTS, AST=Tbox2324$AST, Playoff=Tadd2324$Playoff)
ggplot(data=dts, aes(x=GINI_PTS, y=GINI_AST, color = Playoff, label=Tbox2324$Team)) +
      geom_point() +
      ggrepel::geom_text_repel(aes(label = Tbox2324$Team))+
      geom_vline(xintercept =mean(dts$GINI_PTS))+
      geom_hline(yintercept =mean(dts$GINI_AST))+
      labs(title = "Scatter plot of NBA teams: Gini index for PTS and AST (NBA 2023 – 2024 Regular season)")+
      labs(x = "GINI_PTS") +
      labs(y = "GINI_AST")

# Shot chart of all teams
PbP2324$xx <- PbP2324$original_x/-10
PbP2324$yy <- PbP2324$original_y/10-41.75
shotchart(data=PbP2324, x="xx", y="yy", z="playlength", num.sect=5, type="sectors", scatter=FALSE, result="result")
shotchart(data=PbP2324, x="xx", y="yy", type="density-hexbin", nbins=50, palette="bwr")

# Density estimation of field shots of all teams
data2324 <- subset(PbP2324, result!="" & shot_distance!="")
set.seed(1)
data2324r <- data2324[sample(nrow(data2324), 50000, replace = FALSE, prob = NULL),]
densityplot(data=data2324r, shot.type="field", var="shot_distance", best.score=FALSE, title="Density estimation of field shots of all teams, with respect to shot distance (NBA 2023 - 2024 Regular Season), sample: 50000 shots.")

# MDS Map of NBA Players
attach(Pbox2324)
data2324 <- data.frame(P2M, P3M, FTM, REB=(OREB+DREB), AST, STL, BLK)/MIN
detach(Pbox2324)
data2324 <- subset(data2324, Pbox2324$MIN>=1500)
id <- Pbox2324$Player[Pbox2324$MIN>=1500]
mds <- MDSmap(data2324)
selp <- which(id=="Giannis Antetokounmpo" | id=="Stephen Curry" | id=="Shai Gilgeous-Alexander" | id=="Clint Capela" | id=="Tyrese Haliburton" | id=="Alex Caruso" | id=="Victor Wembanyama")
plot(mds, labels=id, subset=selp, col.subset="tomato")
plot(mds, labels=id, subset=selp, col.subset="tomato", zoom=c(-2.5,2,-2.5,2.5))

# Hierarchical clustering - Ward
attach(Pbox2324)
data2324 <- data.frame(PTS, P2M, P3M, REB=(OREB+DREB), AST, TOV, STL, BLK)/MIN
detach(Pbox2324)
data2324 <- subset(data2324, Pbox2324$MIN>=1800)
ID <- Pbox2324$Player[Pbox2324$MIN>=1800]
hclu1 <- hclustering(data2324)
plot(hclu1)
hclu2 <- hclustering(data2324, labels=ID, k=7)
plot(hclu2, profiles=TRUE)
plot(hclu2, rect=TRUE, colored.branches=TRUE, cex.labels=0.2)

2022-23

※データ分析を実践する際に参考にしている書籍『Basketball Data Science: With Applications in R』の紹介記事書いていますのでよろしければ下記よりご確認ください。

スポンサーリンク
スポンサーリンク
スポンサーリンク
** データ分析を実践する際に参考にしている書籍です **

Paola Zuccolotto and Marica Manisera (2020), Basketball Data Science – with Applications in R. Chapman and Hall/CRC. ISBN 9781138600799.

Summary

X(旧Twitter)アカウントあります。コメント等があればhttps://x.com/basketrashtalkへお願いします。

Kaneshiroをフォローする
タイトルとURLをコピーしました