※ 当サイトは、アフィリエイト広告を利用しています。

データで見るボストン・セルティックスの特徴と傾向【NBA2022-23 レギュラー・シーズン】

記事内に広告が含まれています。
スポンサーリンク
スポンサーリンク

※参考<統計ソフトRに入力するコマンド>

 統計ソフトRのインストール手順をまとめた記事も作成していますので、よろしければご参考ください。

library(BasketballAnalyzeR)
library(gridExtra)
library(dplyr)
Pbox2223 <- read.csv(file="Pbox_2223.csv")
dts.PbP.2223 <- read.csv(file="PbP_2223.csv")
PbP2223 <- PbPmanipulation(dts.PbP.2223)

# Bubble plot of the players
Pbox2223b <- subset(Pbox2223, MIN>=500)
data2223b <- subset(Pbox2223b, Team=="Boston Celtics")
attach(data2223b)
X2 <- data.frame(P=Player, P2M=P2M/GP, P3M=P3M/GP, FTp, AS=(P2A+P3A+FTA)/GP)
detach(data2223b)
labs1 <- c("2-point shots made per Game", "3-point shots made per Game", "free throws (% made)", "Total shots attempted per Game")
bubbleplot(X2, id="P", x="P2M", y="P3M", col="FTp", size="AS", labels=labs1, title="Bubble plot of Boston Celtics' players: Shooting stats and shots attempted (NBA 2022 - 2023 Regular season)", text.size=3.5, mx = mean(Pbox2223b$P2M/Pbox2223b$GP), my = mean(Pbox2223b$P3M/Pbox2223b$GP))

attach(data2223b)
Y2 <- data.frame(P=Player, DREB=DREB/GP, STL=STL/GP, BLK=BLK/GP, PM=PM/GP)
detach(data2223b)
labs2 <- c("Defensive Rebounds per Game", "Blocks per Game", "Plus-Minus per Game", "Steals per Game")
bubbleplot(Y2, id="P", x="DREB", y="BLK", col="PM", size="STL", labels=labs2, title="Bubble plot of Boston Celtics' players: Defensive stats and Plus-Minus (NBA 2022 - 2023 Regular season)", text.size=3.5, mx = mean(Pbox2223b$DREB/Pbox2223b$GP), my = mean(Pbox2223b$BLK/Pbox2223b$GP))

# Radar chart of the players
Pbox2223r <- subset(Pbox2223, MIN>=500)
attach(Pbox2223r)
T <- data.frame(P2M,P3M, FTM, REB=OREB+DREB, AST, STL, BLK)/MIN
detach(Pbox2223r)
T2 <- data.frame(Team=Pbox2223r$Team, Player=Pbox2223r$Player, T)
listplots <- radialprofile(data=T2[3:9], title=T2$Player, std=TRUE)
listplotsT <- listplots[T2$Team=="Boston Celtics"]
grid.arrange(grobs=listplotsT[1:15], ncol=5)
grid.arrange(grobs=listplotsT[13:24], ncol=4)

# Variability diagram of the traditional stats
Pbox2223v <- subset(Pbox2223, Team=="Boston Celtics" & MIN>=500)
vrb <- variability(data=Pbox2223v, data.var=c("P2M", "P3M", "FTM", "OREB", "DREB","AST","STL","BLK","TOV"), size.var=c("MIN"))
plot(vrb, title="Variability diagram of the traditional stats, Boston Celtics' players (NBA 2022 - 2023 Regular season)")

# Shot chart of the team
PbP2223sc <- subset(PbP2223, data_set!="2022-23 Playoffs" & team=="BOS")
PbP2223sc$xx <- PbP2223sc$original_x/-10
PbP2223sc$yy <- PbP2223sc$original_y/10-41.75
shotchart(data=PbP2223sc, x="xx", y="yy", z="playlength", num.sect=5, type="sectors", scatter=FALSE, result="result")
shotchart(data=PbP2223sc, x="xx", y="yy", type="density-hexbin", nbins=50, palette="bwr")

# Density estimation of the field shots
data2223d <- subset(PbP2223, data_set!="2022-23 Playoffs" & result!="" & shot_distance!="" & team=="BOS")
densityplot(data=data2223d, shot.type="field", var="shot_distance", best.score=TRUE, title="Density estimation of the field shots of Boston Celtics, with respect to shot distance (NBA 2022 - 2023 Regular Season)")
densityplot(data=data2223d, shot.type="field", var="totalTime", best.score=TRUE, title="Density estimation of the field shots of Boston Celtics, with respect to total time (NBA 2022 - 2023 Regular Season)")
densityplot(data=data2223d, shot.type="field", var="playlength", best.score=TRUE, title="Density estimation of the field shots of Boston Celtics, with respect to play length (NBA 2022 - 2023 Regular Season)")

# Expected points of the teams
data2223t <- subset(PbP2223, data_set!="2022-23 Playoffs" & result!="" & shot_distance!="" & team=="BOS")
data2223o <- subset(PbP2223, data_set!="2022-23 Playoffs" & result!="" & shot_distance!="" & oppTeam=="BOS")
data2223t <- mutate(data2223t, player = "Boston Celtics")
data2223o <- mutate(data2223o, player = "Opponent teams")
data2223TO <- bind_rows(data2223t, data2223o)
pl <- c("Boston Celtics","Opponent teams")
mypal <- colorRampPalette(c("red","blue"))
expectedpts(data2223TO, players=pl, col.team="gray", palette=mypal, col.hline="transparent", var="shot_distance", xlab="Shot distance", title="Expected points of Boston Celtics and opponent teams, with respect to shot distance (NBA 2022 - 2023 Regular Season)")
expectedpts(data2223TO, bw=1500, players=pl, col.team="gray", palette=mypal, col.hline="transparent", var="totalTime", xlab="Total time", title="Expected points of Boston Celtics and opponent teams, with respect to total time (NBA 2022 - 2023 Regular Season)")
expectedpts(data2223TO, players=pl, col.team="gray", palette=mypal, col.hline="transparent", var="playlength", xlab="Play length", title="Expected points of Boston Celtics and opponent teams, with respect to play length (NBA 2022 - 2023 Regular Season)")

# Network of assists
PbP2223an <- subset(PbP2223, data_set!="2022-23 Playoffs" & team=="BOS")
PbP2223AN <- PbP2223an[!(PbP2223an$event_type=="shot" & PbP2223an$result=="missed"),]
netdataAN <- assistnet(PbP2223AN)
plot(netdataAN, layout="circle", edge.thr=20, node.col="FGPTS", node.size="ASTPTS")
TABan <- netdataAN$assistTable
Xan <- netdataAN$nodeStats
names(Xan)[1] <- "Player"
dataAN <- merge(Xan, Pbox2223, by="Player")
dataANsp <- subset(dataAN, Team=="Boston Celtics")
mypal <- colorRampPalette(c("blue", "yellow", "red"))
scatterplot(dataANsp, data.var=c("ASTPTS", "FGPTS"), z.var="MIN", labels=dataANsp$Player, palette=mypal, repel_labels=TRUE, title="Scatter plot of Boston Celtics' players: ASTPTS and FGPTS (NBA 2022 - 2023 Regular Season)")
selan <- which(dataAN$MIN>1500 & dataAN$Team=="Boston Celtics")
tabAN <- TABan[selan, selan]
no.pl <- nrow(tabAN)
pR <- pM <- vector(no.pl, mode="list")
GiniM <- array(NA, no.pl)
GiniR <- array(NA, no.pl)
for (pl in 1:no.pl){
      ineqplM <- inequality(tabAN[pl,], npl=no.pl)
      GiniM[pl] <- ineqplM$Gini
      ineqplR <- inequality(tabAN[,pl], npl=no.pl)
      GiniR[pl] <- ineqplR$Gini
      title <- rownames(tabAN)[pl]
      pM[[pl]] <- plot(ineqplM, title=title)
      pR[[pl]] <- plot(ineqplR, title=title)
      }

grid.arrange(grobs=pM, nrow=2)
grid.arrange(grobs=pR, nrow=2)

# Shot chart of the opponent teams
PbP2223sco <- subset(PbP2223, data_set!="2022-23 Playoffs" & oppTeam=="BOS")
PbP2223sco$xx <- PbP2223sco$original_x/-10
PbP2223sco$yy <- PbP2223sco$original_y/10-41.75
shotchart(data=PbP2223sco, x="xx", y="yy", z="playlength", num.sect=5, type="sectors", scatter=FALSE, result="result")
shotchart(data=PbP2223sco, x="xx", y="yy", type="density-hexbin", nbins=50, palette="bwr")

# Density estimation of the field shots of the opponent teams
data2223do <- subset(PbP2223, data_set!="2022-23 Playoffs" & result!="" & shot_distance!="" & oppTeam=="BOS")
densityplot(data=data2223do, shot.type="field", var="shot_distance", best.score=TRUE, title="Density estimation of field shots of Boston Celtics' opponents, with respect to shot distance (NBA 2022 - 2023 Regular Season)")

⇐ 2021-22 |🏀| 2023-24 ⇒

※データ分析を実践する際に参考にしている書籍『Basketball Data Science: With Applications in R』の紹介記事も書いていますので、よろしければ下記よりご確認ください。

スポンサーリンク
スポンサーリンク
スポンサーリンク
** データ分析を実践する際に参考にしている書籍です **

Paola Zuccolotto and Marica Manisera (2020), Basketball Data Science – with Applications in R. Chapman and Hall/CRC. ISBN 9781138600799.

TeamsBoston Celtics

X(旧Twitter)アカウントあります。コメント等があればhttps://x.com/basketrashtalkへお願いします。

Kaneshiroをフォローする
タイトルとURLをコピーしました